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A family of one-dimensional multispecies reaction-diffusion processes on a lattice is introduced. It is
that these processes are exactly solvable, provided a nonspectral matrix equation is satisfied. Som
remarks on the solutions to this equation, and some special solutions are given. The large-time behavi
conditional probabilities of such systems is also investigated.
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I. INTRODUCTION

In recent years, the asymmetric exclusion process and
problems related to it, including, for example, bipolymeriz
tion @1#, dynamical models of interface growth@2#, traffic
models@3#, the noisy Burgers equation@4#, and the study of
shocks@5,6#, have been extensively investigated. The d
namical properties of this model have been studied in@6–8#.
As the results obtained by approaches like mean field are
reliable in one dimension, it is useful to introduce solvab
models and analytic methods to extract exact physical
sults. Among these methods is the coordinate Bethe an
which was used in@9# to solve the asymmetric simple exclu
sion process on a one-dimensional lattice. In@10#, a similar
technique was used to solve the drop-push model@11# and a
generalized one-parameter model interpolating between
asymmetric simple exclusion model and the drop-pu
model. In@12#, this family was further generalized to a fam
ily of processes with arbitrary left- and right-diffusion rate
All of these models were lattice models. Finally, the beh
ior of the last model on a continuum was investigated
@13#. Continuum models of this kind were also investigat
in @14,15#. In @16# a generalization of such processes w
studied that also contained annihilation of particles.

In all of these studies, people have been mainly concer
with so-called single-species processes, in which only
kind of particle exists and moves on the lattice~or the con-
tinuum!. Another interesting problem is the study of mul
species systems where several kinds of particle move
interact on a lattice. In@17#, single-species systems we
characterized; the equations governing the evolution of
N-point functions containN- or fewer-point functions. This
was done for multispecies systems in@18#. In @19#, two-
species reaction-diffusion systems were introduced that
solvable in the sense that theSmatrix corresponding to them
is factorizable into two-particleS matrices. It was found
there that the criterion for this is that the interactions~which
are of the nearest-neighbor type! must be such so that theS
matrix satisfies a kind of spectral Yang-Baxter equation.

We follow the same line. That is, we investigate intera
tions that can be written as boundary conditions for the pr
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ability functions. These interactions preserve the total nu
ber of particles, so that if one begins withN particles,
knowing theN-point probabilities is enough to know every
thing about the system. Using the coordinate Bethe ansa
is found that for this ansatz to be consistent theS matrix
should satisfy a kind of spectral Yang-Baxter equation@19#.
However, theS matrix is of a special form containing th
boundary conditions~or interactions!, and not every solution
of the spectral Yang-Baxter equation can be used to c
struct such a solvable model. We investigate the spec
equation theS matrix should satisfy and show that this
equivalent to a nonspectral equation for the boundary co
tions. This is independent of the number of species.

The scheme of the paper is the following. In Sec. II, t
prescription for investigating multispecies reaction-diffusi
systems in terms of diffusion systems equipped with suita
boundary conditions is studied. In Sec. III, the Bethe-ans
solution for such~solvable! systems is obtained and its larg
time behavior is investigated. In Sec. IV, the solvability c
terion is obtained and it is shown that this criterion is
nonspectral matrix equation. In Sec. V, some general pr
erties of the solutions of the solvability criterion are studie
Finally, in Sec. VI some special solutions of the solvabil
equation are studied.

II. MULTISPECIES REACTION-DIFFUSION SYSTEMS
AND THE BOUNDARY CONDITIONS

Consider a system consisting ofN particles on a lattice,
drifting to the right with unit rate if the right neighboring sit
is empty, and interacting with each other only if two of the
are adjacent. Suppose that there aren kinds ~or species! of
particle and the interaction between the particles is in
form that, if two particlesAa and Ab are adjacent to each
other, they may change toAg andAd with the ratebab

gd . That
is, the allowed processes are

AaB→BAa with rate 1

AaAb→AgAd with ratebab
gd , ~1!

where

(
gd

bab
gd 51. ~2!
©2001 The American Physical Society01-1
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These processes result in the master equation

Ṗa1 , . . . ,aN~x1 , . . . ,xN ;t !

5Pa1 , . . . ,aN~x121, . . . ,xN ;t !1•••

1Pa1 , . . . ,aN~x1 , . . . ,xN21;t !

2NPa1 , . . . ,aN~x1 , . . . ,xN ;t !, ~3!

if xi,xi 1121. The symbolPa1 , . . . ,aN(x1 , . . . ,xN ;t) de-
notes the probability of finding a particle of typea1 in x1, a
particle of typea2 in x2 , . . . at the timet. The so-called
physical region consists of the points satisfyingxi,xi 11. If
xi5xi 1121, the interactions change the equation. For c
ity, let us write the evolution equation for the two-partic
sector:

Ṗab~x,x11!5Pab~x21,x11!

1 (
(gd)Þ(ab)

bgd
abPgd~x,x11!

2BabPab~x,x11!2Pab~x,x11!, ~4!

where

Bab
ª (

(gd)Þ(ab)
bab

gd . ~5!

Using

bab
ab
ª12 (

(gd)Þ(ab)
bab

gd , ~6!

it is seen that Eq.~4! can be written as

Ṗab~x,x11!5Pab~x21,x11!1bgd
abPgd~x,x11!

22Pab~x,x11!, ~7!

where summation is implied on repeated indices. Compa
this with Eq. ~3!, it is seen that it can be written as Eq.~3!
provided one introduces the boundary condition

Pab~x,x!5bgd
abPgd~x,x11!, ~8!

or, in a more compact form,

uP~x,x!&5b uP~x,x11!&. ~9!

The matrixb should satisfy two criteria. First, its nondiago
nal elements should be non-negative~since they are rates!.
Second, the sum of the elements of each of its colum
should be 1. This can be written in a compact form as

^su ^ ^sub5^su ^ ^su, ~10!

where

saª1. ~11!

Note that if the number of species is 1 the asymmetric sim
exclusion process@9# is obtained.
01110
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III. THE BETHE-ANSATZ SOLUTION

As in @19#, one can write a Bethe-ansatz solution for E
~3! with the boundary condition

uP~ . . . ,xk5x,xk115x, . . . !&

5bk,k11uP~ . . . ,xk5x,xk115x11, . . . !&,

~12!

where

~13!

We take the ansatz

uP~x;t !&5eEtuC~x!&, ~14!

and it is seen thatuC(x)& should satisfy

EuC~x1 , . . . ,xN!&5uC~x121, . . . ,xN!&1•••

1uC~x1 , . . . ,xN21!&

2NuC~x1 , . . . ,xN!& ~15!

and

uC~ . . . ,xk5x,xk115x, . . . !&

5bk,k11uC~ . . . ,xk5x,xk115x11, . . . !&.

~16!

The Bethe ansatz is that one takes the following form
uC(x)&:

uC~x!&5(
s

Aseis(p)•xuc&, ~17!

whereuc& is an arbitrary vector and the summation runs ov
the elements of the permutation group. Putting this in E
~15! results in

E5 (
k51

N

~e2 ipk21!. ~18!

The boundary condition~16! yields

@12eis(pk11)bk,k11#As1@12eis(pk)bk,k11#Assk
50.

~19!

Heresk is that element of the permutation group which on
interchangespk andpk11. From this, one obtains

Assk
5Sk,k11@s~pk!,s~pk11!#As , ~20!

where the matrixS is defined through

S~p1 ,p2!ª2~12z1b!21~12z2b!, ~21!

and the definition ofSk,k11 is similar to that ofbk,k11 in Eq.
~13!. We have also used the definition

zjªeip j . ~22!
1-2
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This shows that one can constructAs’s from A1 by writing s
as a product ofsk’s. But these elements of the permutatio
group satisfy

sksk11sk5sk11sksk11 . ~23!

This means that

Asksk11sk
5Ask11sksk11

, ~24!

or

Sk,k11~pk11 ,pk12!Sk11,k12~pk ,pk12!Sk,k11~pk ,pk11!

5Sk11,k12~pk ,pk11!Sk,k11~pk ,pk12!

3Sk11,k12~pk11 ,pk12!. ~25!

This can be written as

@S~p2 ,p3! ^ 1#@1^ S~p1 ,p3!#@S~p1 ,p2! ^ 1#

5@1^ S~p1 ,p2!#@S~p1 ,p3! ^ 1#@1^ S~p2 ,p3!#.

~26!

Writing the S matrix as the the product of the permutatio
matrix P and anR matrix,

Sk,k115..Pk,k11Rk,k11 , ~27!

Equation~26! is transformed to

R23~p2 ,p3!R13~p1 ,p3!R12~p1 ,p2!

5R12~p1 ,p2!R13~p1 ,p3!R23~p2 ,p3!. ~28!

This is the spectral Yang-Baxter equation.
Provided this condition is satisfied, it is easy to see t

the conditional probability~the propagator! is

U~x;tuy;0!5E dNp

~2p!N e2 ip•y(
s

Aseis(p)•xetE(p),

~29!

where the integration region for eachpi is from @0,2p#, and
we have takenAe51. (e is the identity of the permutation
ve

e

01110
t

group.! Note that Eq. ~10! and the condition of non-
negativity of the nondiagonal elements ofb ensure that the
absolute values of the eigenvalues ofb other than 1 are no
equal to 1. So there is no singularity inS(p1 ,p2) except at
p150, and this is removed by settingpj→pj1 i e, where one
should consider the limite→01. This is the same as wa
done in@9# and@10#, for example. Using this propagator, on
can of course write the probability at the timet in terms of
the initial value of the probability:

uP~x;t !&5(
y

U~x;tuy;0!uP~y;0!&. ~30!

For the two-particle sector, it is not difficult to obtainU. In
fact, as there is only one matrix~b! in the expression forU,
one can treat it as ac number and the problem is reduced
that of @16#, with l replaced byb. So,

U~x;tuy;0!5e22t
tx12y1

~x12y1!!

tx22y2

~x22y2!!

1e22t(
l 50

`
t l 1x22y1

~ l 1x22y1!!

tx12y2

~x12y2!!

3bl S 211
tb

x12y211D . ~31!

One can decompose the vector space on whichb acts into a
subspace on whichb51 ~eigenspace ofb corresponding to
eigenvalue 1) and another invariant subspace. This is d
by decomposing the unit matrix into two projectors

15Q1R, ~32!

whereQ andR are projections satisfying

QR5RQ50. ~33!

Q is the projection on the eigenspace ofb corresponding to
the eigenvalue 1, andR is the projection on the other invari
ant subspace ofb. Using this, one can writeU as
U~x;tuy;0!5Fe22t
tx12y1

~x12y1!!

tx22y2

~x22y2!!
1e22t(

l 50

`
t l 1x22y1

~ l 1x22y1!!

tx12y2

~x12y2!! S 211
t

x12y211D GQ

1Fe22t
tx12y1

~x12y1!!

tx22y2

~x22y2!!
1e22t(

l 50

`
t l 1x22y1

~ l 1x22y1!!

tx12y2

~x12y2!!
bl S 211

tb

x12y211D GR. ~34!
ple
o
the

of
Here we have used

b5b~Q1R!5Q1bR. ~35!

As the eigenvalues ofb, other than 1, are assumed to ha
moduli not equal to 1, the second term in Eq.~34! is the
same as Eq.~33! in @16#, that is, a term obtained from th
boundary condition corresponding to annihilation (l,1 in
@16#!. The first term corresponds to an asymmetric sim
exclusion process@9#. The large-time behavior of these tw
terms is also simply obtained. The large-time behavior of
first was obtained in@13#, and that of the second in@16#. At
large times, the second term is found to be independentb
1-3
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~or l) and vanishing faster than 1/t. Also, the summation of
this term vanishes ast tends to infinity. In fact, using@16# it
is seen that

~ the second term!5
1

2pt
$e2[(x12y12t)21(x22y22t)2]/(2t)

2e2[(x12y12t)21(x22y22t)2]/(2t)%,

t→`. ~36!

So at large times only the first term of Eq.~34! survives. This
means that at large times the propagator is proportiona
the projection on the eigenspace ofb corresponding to the
eigenvalue 1~the projection on theequilibrium subspace of
b) and the proportionality constant is simply the propaga
of the asymmetric simple exclusion process.

To conclude, for large times the two-particle condition
probability is that of an asymmetric simple exclusion proc
projected on the eigenspace ofb corresponding to its uni
eigenvalue.

IV. SOLVABILITY CRITERIA FOR THE BOUNDARY
CONDITIONS

From Eq.~21!, it is seen thatS(p1 ,p2) is a binomial of
degree 1 with respect toz2ªeip2. Putting this in Eq.~26!,
one arrives at a quadratic expression with respect toz3. The
coefficients of this expression are, of course, matrices
pending onz1 and z2. It is easy to find the roots of this
expression forz3. In fact, puttingz35z1 in Eq. ~26!, one
arrives at the identity

@S~p2 ,p1! ^ 1#@S~p1 ,p2! ^ 1#

[@1^ S~p1 ,p2!#@1^ S~p2 ,p1!#. ~37!

@We note thatS(p1 ,p2)S(p2 ,p1)[1.# Also, puttingz35z2,
another identity is obtained:

@1^ S~p1 ,p2!#@S~p1 ,p2! ^ 1#

[@1^ S~p1 ,p2!#@S~p1 ,p2! ^ 1#. ~38!

These two identities show that the roots of the quadr
expression forz3 are z1 and z2. That is, one can write tha
expression as

~z32z1!~z32z2!Q~z1 ,z2!50. ~39!

So Eq.~26! is equivalent toQ50, which itself is obtained by
putting z350 in Eq. ~26!:

@~12z2b!21
^ 1#@1^ ~12z1b!21#

3@~12z1b!21~12z2b! ^ 1#

5@1^ ~12z1b!21~12z2b!#@~12z1b!21
^ 1#

3@1^ ~12z2b!21#. ~40!

Inverting both sides, one arrives at
01110
to
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@~12z2b!21~12z1b! ^ 1#@1^ ~12z1b!#@~12z2b! ^ 1#

5@1^ ~12z2b!#@~12z1b! ^ 1#

3@1^ ~12z2b!21~12z1b!#. ~41!

This is a quadratic expression in terms ofz1. For z150, Eq.
~41! gives the identity

@~12z2b!21
^ 1#@~12z2b! ^ 1#

[@1^ ~12z2b!#@1^ ~12z2b!21#, ~42!

while for z15z2 the identity

@1^ ~12z2b!#@~12z2b! ^ 1#

[@1^ ~12z2b!#@~12z2b! ^ 1# ~43!

is obtained. So the quadratic expression corresponding to
~41! is equivalent to

z1~z12z2!Q̃~z2!50, ~44!

and to findQ̃ one simply uses the coefficient ofz1
2 in Eq.

~41!. This is

~12z2b12!
21b12b23~12z2b12!

5~12z2b23!b12b23~12z2b23!
21, ~45!

or

b12b23~12z2b12!~12z2b23!5~12z2b12!~12z2b23!b12b23.
~46!

This is a quadratic expression inz2. But the coefficients ofz2
0

andz2
2 are identities. So the only remaining equation is

b12b23~b121b23!5~b121b23!b12b23, ~47!

or

b12@b12,b23#5@b12,b23#b23. ~48!

Equation~48! is equivalent to Eq.~26!. But it is seen that Eq.
~48! is nonspectral, whereas Eq.~26! is spectral. That is, Eq
~26! is an equation to be satisfied for all values of certa
parameters, whereas there are no parameters in Eq.~48!. So
it is far simpler to seek the solutions to Eq.~48! than to seek
those of Eq.~26!.

To summarize, a matrixb, or the reactions~1!, corre-
sponds to an exactly solvable reaction-diffusion system o
one-dimensional lattice, providedb satisfies Eqs.~48! and
~6! @or Eq.~10!, equivalently#, and the nondiagonal elemen
of b are non-negative.

V. GENERAL PROPERTIES OF THE SOLUTIONS
TO THE SOLVABILITY CRITERIA

Solutions to Eq.~48! have two general properties. First,
b is a solution, then

b8ªab1b ~49!
1-4
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is another solution for constanta and b. If b satisfies Eq.
~10!, then

^su ^ ^sub85~a1b!^su ^ ^su. ~50!

So puttingbª12a ensures thatb8 satisfies Eq.~10!. If a
.0, then the nondiagonal elements ofb8 are non-negative
provided the nondiagonal elements ofb are non-negative. So

b8ªab1~12a! ~51!

corresponds to a solvable system~for a.0) if b does. It is
easy to see that the meaning of this transformation is sim
to multiply the reaction rates bya.

Second, ifb is a solution to Eq.~48!, then

b8ªu^ ubu21
^ u21 ~52!

satisfies Eq.~48! as well. Hereu is an arbitrary~nonsingular!
matrix. This transformation, however, does not necessa
respect the conditions~10! and non-negativity of the rates
Thus another problem arises. Supposeb is a solution to Eq.
~48!, and we want to obtain a solvable system using
transformation~52!. We must have

^su ^ ^suu^ ub5^su ^ ^suu^ u. ~53!

This means thatu must changê su to some^s8u so that
^s8u ^ ^s8u is a left eigenvector ofb corresponding to a uni
eigenvalue. One may search in the eigenvectors ofb to find
whether there is an eigenvector of the form^s8u ^ ^s8u. If
there is such an eigenvector, then any matrixu that changes
^su to ^s8u can be used to obtainb8 according to Eq.~52!.
Thisb8 satisfies Eqs.~48! and~10!. But its diagonal elements
may be non-negative or not; this should be checked se
rately. If none of the eigenvalues ofb are of the form
^s8u ^ ^s8u, then this method cannot be used to obtain a so
able system. This method resembles very closely that use
@20#.

VI. SOME SPECIAL CASES

Case I: b25a1bb (a andb are numbers!. In this case,
one can define

b8ªb1g, ~54!

with g satisfying

g21bg2a50, ~55!

to obtain

b825~b12g!b8. ~56!

Putting thisb8 in Eq. ~48!, one obtains the braid equation fo
b8:

b128 b238 b128 5b238 b128 b238 . ~57!

From Eq. ~56!, it is seen thatb8 either can be scaled to
projection (b825b8), or is nilpotent. One concludes the
that any nilpotent or projection solution to the~nonspectral!
01110
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braid equation is a solution to Eq.~48!. One can then use an
linear combination of this solution with the unit matrix a
another solution to that equation. Note, however, that th
solutions of Eq.~48! do not necessarily satisfy other criter
of the solvable system, that is, non-negativity of the non
agonal elements and Eq.~10!. An inspection of the solutions
obtained in@19# shows that solutions~1!–~15! and ~17! are
of this type. As mentioned in the previous section, one can
course take a linear combination of each solution with
unit matrix to obtain another solution.

Case II: b5u^ v. Here Eq.~48! takes the form

u2
^ v@v,u# ^ v5u^ @v,u#u^ v2. ~58!

A simple way to satisfy this is to set

@u,v#50. ~59!

Thus, using any two commuting matricesu and v one can
construct a solution to Eq.~48!. If the elements of one of
these matrices are non-negative, and the nondiagonal
ments of the other are also non-negative, then the nondia
nal elements ofb are non-negative. If

^suu5^suv5^su, ~60!

thenb satisfies Eq.~10! as well. Of course, having found
solution of this type one can use a linear combination o
with the unit matrix as another solution. Solutions~1!, ~4!,
~7!, ~14!, ~17!, ~20!, ~21!, ~22!, ~25!, ~26!, and ~28! of @19#
are of this kind.

It is possible to have other solutions to Eq.~58!. In this
case, let us also use Eq.~10!. This shows that one may res
caleu andv so that Eq.~60! is satisfied. One then arrives a

u25u,

v25v,

vuv5uvu, ~61!

if @u,v#Þ0. From these, it is seen thatu, v, 12u, anduvu
are projections. Moreover,

~12u!uvu5uvu~12u!50. ~62!

This shows that 12u anduvu can be simultaneously diago
nalized. The diagonal form of them will be

12u5S 0 0 0

0 0 0

0 0 1
D ,

uvu5S 1 0 0

0 0 0

0 0 0
D . ~63!

Here the elements of the above matrices are matrices th
selves, and 1 is the unit matrix of the appropriate dimens
Writing an ansatz forv,
1-5
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v5S v11 v12 v13

v21 v22 v23

v31 v32 v33

D , ~64!

and putting it in Eq.~61!, one finally arrives at the following
forms for u andv:

u5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D ,

v5S 1 0 0 0

0 0 w 0

0 w8 1 0

0 0 0 0

D , ~65!

where all of the entries in the above matrices are matric
andw andw8 should satisfy

ww85w8w50. ~66!

Each of the diagonal blocks of these matrices may be z
dimensional, except the first. It should, at least, be one
n-

er

ld

01110
s,

ro
i-

mensional. The reason is thatu and v have at least one
common left eigenvector̂su corresponding to the unit eigen
value. Also, the dimension of each block ofu is equal to that
of the corresponding block inv. Also note that if the dimen-
sion of u and v is 2 ~there are two kinds of particle! then
there will be no space left forw andw8, andu andv must be
commuting.

The final result is that in two dimensions no new soluti
exists (u andv must be commuting!, and in more than two
dimensionsu and v must be of the form of Eq.~65!. Of
course any similarity transformation on Eq.~65! gives an-
other solution to Eq.~48!. In fact, one has to use a similarit
transformation to makêsu a left eigenvector ofu andv with
unit eigenvalue.

Two very simple subcases areb51^ v and b5u^ 1.
These describe reactions

AaAb→AaAd with rate vb
d ~67!

and

AaAb→AgAb with rate ua
g , ~68!

respectively. That is, in each case only one of the partic
changes, and the rate of change is independent of the typ
the other particle.
.

t.
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@11# G.M. Schütz and E. Domnay, J. Stat. Phys.72, 277 ~1993!.
@12# M. Alimohammadi, V. Karimipour, and M. Khorrami, J. Sta

Phys.97, 373 ~1999!.
@13# F. Roshani and M. Khorrami, Phys. Rev. E60, 3393~1999!.
@14# T. Sasamoto and M. Wadati, J. Phys. Soc. Jpn.67, 784~1998!.
@15# T. Sasamoto and M. Wadati, J. Phys. A31, 6057~1998!.
@16# F. Roshani and M. Khorrami, e-print cond-mat/0007352.
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