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Solvable multispecies reaction-diffusion processes
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A family of one-dimensional multispecies reaction-diffusion processes on a lattice is introduced. It is shown
that these processes are exactly solvable, provided a nonspectral matrix equation is satisfied. Some general
remarks on the solutions to this equation, and some special solutions are given. The large-time behavior of the
conditional probabilities of such systems is also investigated.
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[. INTRODUCTION ability functions. These interactions preserve the total num-
ber of particles, so that if one begins wild particles,

In recent years, the asymmetric exclusion process and thgowing theN-point probabilities is enough to know every-
problems related to it, including, for example, bipolymeriza-thing about the system. Using the coordinate Bethe ansatz, it
tion [1], dynamical models of interface growfl2], traffic  is found that for this ansatz to be consistent Senatrix
models[3], the noisy Burgers equatidd], and the study of ~should satisfy a kind of spectral Yang-Baxter equafib@l.
shocks[5,6], have been extensively investigated. The dy-However, theS matrix is of a special form containing the
namical properties of this model have been studielbirg]. boundary conditiongor interactiong, and not every solution
As the results obtained by approaches like mean field are n&f the spectral Yang-Baxter equation can be used to con-
reliable in one dimension, it is useful to introduce solvablestruct such a solvable model. We investigate the spectral
models and analytic methods to extract exact physical reequation theS matrix should satisfy and show that this is
sults. Among these methods is the coordinate Bethe ansat@quivalent to a nonspectral equation for the boundary condi-
which was used ifi9] to solve the asymmetric simple exclu- tions. This is independent of the number of species.
sion process on a one-dimensional lattice[10], a similar The scheme of the paper is the following. In Sec. Il, the
technique was used to solve the drop-push mptiland a  Prescription for investigating multispecies reaction-diffusion
generalized one-parameter model interpolating between th@ystems in terms of diffusion systems equipped with suitable
asymmetric simple exclusion model and the drop_pusrbOUﬂdal'y conditions is studied. In Sec. lll, the Bethe-ansatz
model. In[12], this family was further generalized to a fam- solution for such(solvablg systems is obtained and its large-
ily of processes with arbitrary left- and right-diffusion rates. time behavior is investigated. In Sec. IV, the solvability cri-
All of these models were lattice models. Fina”y, the behav.terion is obtained and it is shown that this criterion is a
ior of the last model on a continuum was investigated innonspectral matrix equation. In Sec. V, some general prop-
[13]. Continuum models of this kind were also investigatederties of the solutions of the solvability criterion are studied.
in [14’15 In [16] a genera”zation of such processes WaSFinaIIy, in Sec. VI some Special solutions of the solvability
studied that also contained annihilation of particles. equation are studied.

In all of these studies, people have been mainly concerned
with so-called single-species processes, in which only one II. MULTISPECIES REACTION-DIFFUSION SYSTEMS
kind of particle exists and moves on the latti@ the con- AND THE BOUNDARY CONDITIONS
tinuum). Another interesting problem is the study of multi-

species systems where several kinds of particle move an&i, ’ , , X , : ) § :
interact on a lattice. 1{17], single-species systems were | rifting to the right with unit rate if the right neighboring site

characterized; the equations governing the evolution of th& €mPty, and interacting with each other only if two of them
N-point functions contairN- or fewer-point functions. This are adjacent. Suppose that there arkinds (or species of
was done for multispecies systems [ibg]. In [19], two- particle an_d the mteractlon betwegn the partlcles is in the
species reaction-diffusion systems were introduced that af@™M that, if two particlesA” and A™ are adjacent to each
solvable in the sense that tBeanatrix corresponding to them Other, they may change % andA® with the rateb;j; . That

is factorizable into two-particleS matrices. It was found IS, the allowed processes are

there that the criterion for this is that the interactidwhich N «

are of the nearest-neighbor typ@ust be such so that tig ADI—DA  with rate 1
matrix satisfies a kind of spectral Yang-Baxter equation.

Consider a system consisting Nf particles on a lattice,

. . . . . «a H 6
We follow the same line. That is, we investigate interac- A“AP—AYA’  with rateb?y, 1)
tions that can be written as boundary conditions for the prob-
where
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These processes result in the master equation
pat - IN(Xq, ... XN5T)
=P N — 1, L X )
+ P ON(x, L Xy 1t)
S XNt €

if X;<Xjy1—1. The symbolP“1: - *N(x,, ... Xy;t) de-
notes the probability of finding a particle of typg in x4, a
particle of typea, in X,, ... at the timet. The so-called
physical region consists of the points satisfye<x;, ;. If

— NP aN(xy

X;=X;j+1— 1, the interactions change the equation. For clar-
ity, let us write the evolution equation for the two-particle

sector:

PB(x,x+1)=P*(x—1x+1)

+ D bU¥PY(x,x+1)
(v8)#(ap)

_ B“BP“B(x,x—I— 1)—- P“'B(X,X+ 1, 4

where
BYf:= bls. (5)
(y0)#(ap)
Using
baf=1— > blj, (6)
(v9)#(aB)

it is seen that Eq(4) can be written as
PA(x,x+1)=P*(x—1x+1)+b5P7(x,x+1)

—2PP(x,x+1), (7)
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Ill. THE BETHE-ANSATZ SOLUTION

As in [19], one can write a Bethe-ansatz solution for Eq.
(3) with the boundary condition

[PC. . X=X Xgp 1= X, - )
=byk+1/P(. . X=X X1 =X+1,.00)),
(12

where

bk,k+l::1®”'®1® b RNMR---1.

N (13
kk+1
We take the ansatz
[P(X;1)=e5|¥(x)), (14
and it is seen that¥ (x)) should satisfy
E|W(Xy, ... X\))=|P(X0—1, ... Xn))+ -
+|W(Xq, ... Xn—1))
—N|W(Xq, ... Xn)) (15
and
[U(. . X=X XK1= X, - 2))
=bg k1l X=X X1 =X+1,0)).
(16)

The Bethe ansatz is that one takes the following form for
¥ (x)):
W (0)=2 APy, (17

where| ) is an arbitrary vector and the summation runs over
the elements of the permutation group. Putting this in Eq.

where summation is implied on repeated indices. Comparingl5) results in

this with Eq.(3), it is seen that it can be written as ES)
provided one introduces the boundary condition

P*A(x,x) =bIEPY2(x,x+1), (8)

or, in a more compact form,

[P(x,x))=b |P(x,x+1)). (9)

The matrixb should satisfy two criteria. First, its nondiago-

nal elements should be non-negati@nce they are rates

Second, the sum of the elements of each of its column

should be 1. This can be written in a compact form as

(s|®(s|b=(s|®(s], (10

where

=1, (17

a

Note that if the number of species is 1 the asymmetric simpl

exclusion procesE9] is obtained.

N
E=D, (e 'Pk—1), (18)
k=1

The boundary conditiofi16) yields
[1-e7Pkedby 1 ]A,+[1-€e7Pdby  4]A,, =0.

(19

oo

Hereo is that element of the permutation group which only
'gwterchangespk andp,, ;. From this, one obtains

Am)'k: Sk,k+l[ 0-( pk)10'( Pk+ l)]Aa' ’ (20)
where the matrixS is defined through
S(p1,P2) == (1=210) "H(1-2,b), 21

and the definition o5, . ; is similar to that ofo, ., in EQ.

élS). We have also used the definition

z;:=€'Pi. (22)
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This shows that one can constrégt’s from A; by writinge group) Note that Eq.(10) and the condition of non-
as a product otr’s. But these elements of the permutation negativity of the nondiagonal elements lofensure that the
group satisfy absolute values of the eigenvalueshobther than 1 are not
equal to 1. So there is no singularity 8{p,,p,) except at

TkTk+ 19k~ T+ 19k T ket 1+ 23 p;=0, and this is removed by settipg— p;+ie, where one
This means that should consider the limit—0". This is the same as was
done in[9] and[10], for example. Using this propagator, one
Asiors 0= Po 100000y (24 can of course write the probability at the tirhén terms of
or the initial value of the probability:
Sk ket 1Pkt 15 Pi+ 2) St 1k+ 20 Pie s Pier 2) Sk ke 1(Pic s Pi+1) |P(X;t)>=§y: U(x;tly;0)[P(y;0)). (30

=S+ 1k+ 2(Pics Picr 1) S+ 1(Pi s Pict-2)
% 25) For the two-particle sector, it is not difficult to obtaih In
Sk 1k+2(Pi 1, Pi2)- fact, as there is only one matrik) in the expression fou,
This can be written as one can treat.it as anumber and the problem is reduced to
that of[16], with A replaced byb. So,

[S(P2,P3)®1][1®S(P1,P3) [[S(P1,p2)®1]

X1 Y1 tX2=Y2

=[1®S(p;, P3)®1][1® P3)]. U(x;tly;0)=e"
[1@S(p1.P2)I[S(P1.p3) ©1][1©S(P.P3)] (xitly:0)=e 2 st
(26) .
ot ttx2—y1 Y2
Writing the S matrix as the the product of the permutation e 72 FRvvRY ERVRY
matrix IT and anR matrix, =0 (I+x2—y1)! (X1—Y2)!
th
Sk,k-*—l::l—lk,k+1Rk,k+1v (27) xb'| —1+ m . (32
Equation(26) is transformed to
One can decompose the vector space on whielbts into a
R2a(P2:P3)R1(P1,Pa) Rz P1.P2) subspace on which=1 (eigenspace ob corresponding to
=Ri12AP1,P2)R1a(P1,P3)Raa(P2,Pa)- (28)  eigenvalue 1) and another invariant subspace. This is done
by decomposing the unit matrix into two projectors
This is the spectral Yang-Baxter equation.
Provided this condition is satisfied, it is easy to see that 1=Q+R, (32
the conditional probabilitythe propagatoris o o
N whereQ andR are projections satisfying
. . p —ip- io(p)-
U(X,tly,0)=J G " Y2 AP TelER), QR=RQ=0. (33)
(29)

Q is the projection on the eigenspacelo€orresponding to
where the integration region for eaphis from[0,277], and  the eigenvalue 1, anR is the projection on the other invari-
we have takerA,=1. (e is the identity of the permutation ant subspace df. Using this, one can write) as

at trxav1 tX2— Y2 ” o tltxeyn ) ( t )
U(x;tly;0)=|e" +e” 1
R R I P A IR N E A TR v T R 1)

ot tX1—v1 tX2— Y2 o o tltxen tX1Y2 |< th
+|e” +e” b'\ -1+ ——| |R. 34
(X1=YyD)! (Xo—Y2)! =0 (1 +X2—y1)! (X1—Y2)! X1—Y2t+1 (39

|
Here we have used boundary condition corresponding to annihilation<(1 in
b=b(Q+R)=Q-+bR. (35 [16]). The first term corresponds to an asymmetric simple

exclusion procesp9]. The large-time behavior of these two

As the eigenvalues df, other than 1, are assumed to haveterms is also simply obtained. The large-time behavior of the
moduli not equal to 1, the second term in H@4) is the first was obtained ii13], and that of the second [116]. At
same as Eq(33) in [16], that is, a term obtained from the large times, the second term is found to be independeht of
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(or \) and vanishing faster thant1Also, the summation of  [(1—z,b) X(1—zb)®1][1®(1—2z.0)][(1—2z,b)®1]
this term vanishes astends to infinity. In fact, usin§j16] it
is seen that =[10(1-2b)][(1-zb)®1]

X[1®(1—2b) " Y(1—2zb)]. (41)

(the second terin= i{e’[(Xl’yl’t)2+(x2’y2")2]’(2t) . . o
27t This is a quadratic expression in termszef For z;=0, Eq.

B ef[(xryrt)2+(xryrt)z]/(Zt)}, (41) gives the identity

[(1-2,b) ®@1][(1—z,b)®1]
=[1®(1-zb)][1®(1-2b)" 1], (42

t—oo, (36)

So at large times only the first term of E&4) survives. This
means that at large times the propagator is proportional twhile for z; =z, the identity
the projection on the eigenspace lofcorresponding to the
eigenvalue 1(the projection on thequilibrium subspace of [18(1-2b)][(1-Zb)®1]
b) and the proportionality constant is simply the propagator =[1®(1-2b)][(1-2zb)®1] (43)
of the asymmetric simple exclusion process.
To conclude, for large times the two-particle conditionalis obtained. So the quadratic expression corresponding to Eq.
probability is that of an asymmetric simple exclusion procesg41) is equivalent to
projected on the eigenspace lfcorresponding to its unit

eigenvalue. 21(2,-2,)Q(2,) =0, (44)
V. SOLVABILITY CRITERIA FOR THE BOUNDARY and to f_int_:i@ one simply uses the coefficient af in Eq.
CONDITIONS (41). This is
From Eq.(21), it is seen thaS(p;,p,) is a binomial of (12,015 " Tb1obog(1—2,b45)

degree 1 with respect tm,:=€'P2. Putting this in Eq.(26),

one arrives at a quadratic expression with respeettdhe
coefficients of this expression are, of course, matrices des
pending onz; and z,. It is easy to find the roots of this
expression forzs. In fact, puttingz;=z; in Eq. (26), one  by,by(1—7,015)(1— 2,053 = (1= 2,015) (1— Z,b3) b1 0 03.
arrives at the identity (46)

=(1-2,bp9)b1ohos(1—25b,9) 77, (45

[S(p2,p1)@1][S(p1,p2)®1] This is a quadratic expressionig. But the coefficients oig

—[1©S(py.p) (16 S(pa.py)]. 37 andz3 are identities. So the only remaining equation is

[We note thaiS(p;,p,)S(p2,p1)=1.] Also, puttingz; =z, D102 b1zt b29) = (Duzt b2a)Dizhz, 4
another identity is obtained: or

[1®S(p1,p2)J[S(P1,p2)®1] b1 D12,b23] =[b12,023]b23. (48

=[1®S(p1,p2)][S(p1,p2)®1]. (38)  Equation(48) is equivalent to Eq(26). But it is seen that Eq.
(48) is nonspectral, whereas E@6) is spectral. That is, Eq.
These two identities show that the roots of the quadrati¢2e) is an equation to be satisfied for all values of certain
expression foizz arez; andz,. That is, one can write that parameters, whereas there are no parameters if4Bg.So

expression as it is far simpler to seek the solutions to E¢8) than to seek
those of Eq(26).
(23— 21)(23—2,)Q(21,2,) =0. (39 To summarize, a matriv, or the reactiong1), corre-

) ) L ) . sponds to an exactly solvable reaction-diffusion system on a
So Eq.(26) is equivalent tQ=0, which itself is obtained by  gne-dimensional lattice, providen satisfies Eqs(48) and

putting z;=0 in Eq. (26): (6) [or Eq.(10), equivalently, and the nondiagonal elements
1 _1 of b are non-negative.
[(1-2zb) " *®1][1®(1—2z:b) "]
X[(1-2,b) "X (1—z,b)@1] V. GENERAL PROPERTIES OF THE SOLUTIONS

TO THE SOLVABILITY CRITERIA

=[1®(1—2z;b) " (1—2z,b)][(1—2z;b) '®1
[1e ) 20) L 1) ] Solutions to Eq(48) have two general properties. First, if
X[1®(1—2z,b) 7 1]. (40)  bis a solution, then

Inverting both sides, one arrives at b':=ab+p (49
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is another solution for constamt and 3. If b satisfies Eq. braid equation is a solution to Eg8). One can then use any
(10), then linear combination of this solution with the unit matrix as
another solution to that equation. Note, however, that these

(s|®(slb’=(a+p)(s|@(s]. (500 solutions of Eq(48) do not necessarily satisfy other criteria

. , - of the solvable system, that is, non-negativity of the nondi-

So pu;tmg,i:l— c(vj.ensure]s :hab sagjsffles Eq(10). If « agonal elements and E€L0). An inspection of the solutions

>O’.t en the nondiagonal € ementstof are non-ne_gatlve obtained in[19] shows that solution§l)—(15) and (17) are

provided the nondiagonal elementskodre non-negative. So of this type. As mentioned in the previous section, one can of

(57  course take a linear combination of each solution with the

unit matrix to obtain another solution.

Case It b=u®uv. Here Eq.(48) takes the form

b':=ab+(1—a)

corresponds to a solvable systéfar «>0) if b does. It is
easy to see that the meaning of this transformation is simply
to multiply the reaction rates by.

Second, ifb is a solution to Eq(48), then

u?@ulv,u]l®v=ud[v,ujuev?. (58

A simple way to satisfy this is to set

rao_ -1 -1
b":=u®ubu l®u (52 [u,v]=0. (59

satisfies Eq(48) as well. Hereu is an arbitrary(nonsingulay . . .
matrix. This transformation, however, does not necessarithus' using any .tWO commuting matricasandv one can
respect the condition6l0) and non-negativity of the rates. construct a solution to Eq'48)'.|f the elements Of one of
Thus another problem arises. Suppbse a solution to Eq. these matrices are non-negative, anq the nondlagona! ele-
(48), and we want to obtain a solvable system using th ents of the other are also non-negative, then the nondiago-

transformation(52). We must have nal elements ob are non-negative. If

(s|®(slu®ub=(s|®(sluau. (53 (slu=(slv=(s], (60)

thenb satisfies Eq(10) as well. Of course, having found a
solution of this type one can use a linear combination of it
with the unit matrix as another solution. Solutiofis, (4),
(7), (14), (17), (20), (22), (22), (25), (26), and(28) of [19]
are of this kind.

It is possible to have other solutions to E§8). In this
case, let us also use E.0). This shows that one may res-
galeu andv so that Eq(60) is satisfied. One then arrives at

This means thau must change(s| to some(s’| so that
(s'|®(s'| is a left eigenvector ob corresponding to a unit
eigenvalue. One may search in the eigenvectors tof find
whether there is an eigenvector of the fofsi|®(s’|. If
there is such an eigenvector, then any matrikat changes
(s| to (s’| can be used to obtaib’ according to Eq(52).
Thisb’ satisfies Eq948) and(10). But its diagonal elements
may be non-negative or not; this should be checked sep
rately. If none of the eigenvalues df are of the form 2_

. . uc=u,
(s'|®(s'[, then this method cannot be used to obtain a solv-
able system. This method resembles very closely that used in v2=v
[20]. '
vuv=uou, (61)

VI. SOME SPECIAL CASES
if [u,v]#0. From these, it is seen thatv, 1—u, anduvu

2_ .
Case | b= a+ Bb (a and 8 are numbers In this case, are projections. Moreover,

one can define

b’:=b+1y, (54) (1—uwuvu=uvu(l—u)=0. (62)
with y satisfyin This shows that +u anduvu can be simultaneously diago-
Y 9 nalized. The diagonal form of them will be
2 — =
v+ By—a=0, (55) 00 0
to obtain 1-u=|0 0 o],
b'2=(B+2y)b’. (56) 0 0 1
Putting thisb’ in Eq. (48), one obtains the braid equation for 0
o wu=[0 0 0. 63
b1b5gb1,= 0530105 (57 0 0 O

From Eq.(56), it is seen thab’ either can be scaled to a Here the elements of the above matrices are matrices them-
projection p’?=b’), or is nilpotent. One concludes then selves, and 1 is the unit matrix of the appropriate dimension.
that any nilpotent or projection solution to tfieonspectral ~ Writing an ansatz foo,
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Vi1 U1z Uiz mensional. The reason is thatand v have at least one
common left eigenvectd(s| corresponding to the unit eigen-
v=| bar V22 Uz, (64 value. Also, the dimension of each blockifs equal to that
U3l Uz Uss of the corresponding block in. Also note that if the dimen-
sion ofu andv is 2 (there are two kinds of particiehen
there will be no space left fow andw’, andu andv must be
commuting.
The final result is that in two dimensions no new solution

and putting it in Eq(61), one finally arrives at the following
forms foru andv:

1 0 0O . . .
exists (U andv must be commuting and in more than two
_ 0100 dimensionsu and v must be of the form of Eq(65). Of
u= 0 0 0 ol course any similarity transformation on E@5) gives an-
00 0 0 other solution to Eq(48). In fact, one has to use a similarity
transformation to makés| a left eigenvector ofi andv with
1 0 0 0 unit eigenvalue.
Two very simple subcases ate=1®v and b=u®1.
0 0 woO These describe reactions
v= , , (65)
0 w 1 0 . S
A“AP—AA’  with rate vy (67)
0O 0 0 O
o . . Sand
where all of the entries in the above matrices are matrices,
andw andw’ should satisfy AAB_ATAE  with rate u?, 68)

ww’'=w"w=0. (66) ) o )
respectively. That is, in each case only one of the particles
Each of the diagonal blocks of these matrices may be zerohanges, and the rate of change is independent of the type of

dimensional, except the first. It should, at least, be one dithe other particle.
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